Gainesville State College

Fourteenth Annual Mathematics Tournament

April 12, 2008

Solutions for the Afternoon Team Competition

Round 1

Let x be the number of rabbits, y be the number of kittens, and z the number of chickens. We have

- (1) x + y + z = 100
- (2) 2x + y + 0.1z = 100

The third condition gives us $z = \frac{2}{3}(x+y)$ or 3z = 2x + 2y.

Multiply equation (1) by 2 to obtain $2x + 2y + 2z = 200 \Rightarrow 3z + 2z = 200 \Rightarrow z = 40$. Substituting back and reducing, we have

x y 60

Round 3

To get a zero at the end of a number, you need to multiply a 2 and a 5 together. There are fewer factors of 5 in numbers between 1 and 100 than there are factors of 2. So the number of factors of 5 contained in 100! determines the number of zeros at the end.

The tables show all the integers with factors of 5 that are in 100!

Round 4

$$\angle A + \angle 1 + \angle D = 180^{\circ}$$

$$\angle B + \angle 2 + \angle E = 180^{\circ}$$

$$\angle C + \angle 3 + \angle A = 180^{\circ}$$

$$\angle D + \angle 4 + \angle B = 180^{\circ}$$

$$\angle E + \angle 5 + \angle C = 180^{\circ}$$
2(

Round 5

The discriminant is b^2-4c . If $b^2-4c<0$, then $b^2<4c$ and the quadratic equation has no real solutions. Consider the following:

- 1. When b=1, $b^2=1 \Rightarrow 1 < 4c \Rightarrow c > \frac{1}{4}$. So c=1,2,3,4,5,6,7,8,9,10. Thus, 10 such equations.
- 2. When b = 2, $b^2 = 4 \Rightarrow 4 < 4c \Rightarrow c > 1$. So c = 2, 3, 4, 5, 6, 7, 8, 9, 10. Thus, 9 such equations.
- 3. When b = 3, $b^2 = 9 \Rightarrow 9 < 4c \Rightarrow c > \frac{9}{4}$. So c = 3, 4, 5, 6, 7, 8, 9, 10. Thus, 8 such equations.
- 4. When b = 4, $b^2 = 16 \Rightarrow 16 < 4c \Rightarrow c > 4$. So c = 5, 6, 7, 8, 9, 10. Thus, 6 such equations.
- 5. When

ŀ					•	•	•			
L	L									
										:
ŀ										.
					i i					
ŀ						•			•	:
F -										
		!								.
t										:
F										.
•										.
L										: l
				!						.
<u> </u>	()				! :				<u> </u>
[•	1	•	1	•	•	•	•	
•										:
-										
									•	.
•										:
[I									
ŀ				•		•			•	. [
L -						·				
t l									r ·	:
ŀ		•		i	•	•	•	•	•	. [
									. 	
		1		1		1		1		:
ŀ									•	: [
	·								•	

Round 7

$$\frac{1 \cdot 2 \cdot 4 + 2 \cdot 4 \cdot 8 + 3 \cdot 6 \cdot 12 +}{1 \ 3 \ 9 \ 2 \ 6 \ 18 \ 3 \ 9 \ 27} \quad \frac{\frac{1}{3}}{1 \ 3 \ 9 \left(1^{3} \ 2^{3} \ 3^{3} \ \right)} = \frac{1 \cdot 2 \cdot 4 \left(1^{3} + 2^{3} + 3^{3} + \ \right)}{1 \ 3 \ 9 \left(1^{3} \ 2^{3} \ 3^{3} \ \right)} = \frac{8}{27} \quad \frac{1}{3} = \frac{2}{3}$$